skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Montoya, Luis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Throughout history “sneaker” waves or “king” waves (in Australia), also referred in this study as extreme infragravity (EIG) waves, have been responsible for killing several people throughout the world. Particularly on the coast of Oregon, more than 21 people have died since the year 1990 due to this phenomenon (http://www.oregonlive.com). People that are usually walking by the beach on a “nice” day are suddenly surprised and washed away by what appears to be a “tsunami-like” wave which in reality is an EIG wave. 
    more » « less
  2. null (Ed.)
  3. Abstract Recent observations of energetic infragravity (IG) flooding events, such as those in the Philippines during Typhoon Haiyan, suggest that IG surges may approach the coast as breaking bores with periods of minutes: a very tsunami‐like characteristic. Energetic IG waves have been observed in various locations around the world and have led to loss of lives and damages to property. In this study, a comparison of overland flow characteristics between tsunamis and energetic IG wave events is presented. In general, whenever the tsunamis and energetic IG waves have similar runup, tsunamis tend to generate greater flow depths and longer flood durations than IG. However, flow velocities and Froude number are larger for IG primarily due to bore‐bore capture. This study provides a statistical and physical discriminant between tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition, and damage is possible. 
    more » « less